

Zied Ben Bouallegue and Susanne E. Theis (DWD), 2014

Laurence J. Wilson

Atmospheric Science and Technology Branch
Environment Canada

Time lagged ensemble of precipitation forecasts over the Eastern Mediterranean

Pavel Khain, Yoav Levi, Alon Shtivelman, Elyakom Vadislavsky, Eyal Amitai, Evgeniy Brainin and Nir Stav

The Israel Meteorological Service, Israel

COSMO User Seminar, Offenbach, February 2018

Motivation

~10% of population

~35% of population

Precise precipitation forecast is needed

20170211 18-24Z

Motivation

The last available run is not always better How can we use the previous runs to improve our forecast?

Time Lagged Ensemble (

What is time lagged ensemble for precipitation?

What is the role of additional smoothing?

Precipitation verification using:

- Reliability
- ROC area
- FSS

Optimal smoothing radius

Typical spatial error

What is time lagged ensemble for precipitation?

What is the role of additional smoothing?

Precipitation verification using:

- Reliability
- ROC area
- FSS

Optimal smoothing radius

Typical spatial error

RADAR

>5 mm/6h

Smoothing for more

spread

What is time lagged ensemble for precipitation?

What is the role of additional smoothing?

Smoothing plays the role of additional ensemble members (although worse)

Weak smoothing → not enough spread → many false alarms

Strong smoothing → no sharpness → the forecast is not useful

What is the optimal smoothing?

What is time lagged ensemble for precipitation?

What is the role of additional smoothing?

Precipitation verification using:

- Reliability
- ROC area
- FSS

 \Rightarrow

Optimal smoothing radius

Typical spatial error

What is time lagged ensemble for precipitation?

What is the role of additional smoothing?

Precipitation verification using:

- Reliability
- ROC area
- FSS

 \Longrightarrow

Optimal smoothing radius

Typical spatial error

Verification domain

Period: Dec-Feb 2017 Dec-Feb 2018

What is time lagged ensemble for precipitation?

What is the role of additional smoothing?

Precipitation verification using:

- Reliability
- ROC area
- FSS

 \Longrightarrow

Optimal smoothing radius

Typical spatial error

Reliability diagram

If for all occasions when forecast probability P_k is predicted, the observed frequency of the event is $\overline{O_k} = P_k$ then the forecast is said to be reliable. Similar to bias for a continuous variable

Reliability diagram

Example: Lead time ensemble for +18-24h. Smoothing radius: 20km. Event: >1mm/6h

Reliability vs. Smoothing radius

Example: +18-24h

— Deterministic

— Time-lagged ensemble

Optimal smoothing radius vs. threshold and forecast range

What is time lagged ensemble for precipitation?

What is the role of additional smoothing?

Precipitation verification using:

- Reliability
- ROC area
- FSS

 \Longrightarrow

Optimal smoothing radius

Typical spatial error

From Reliability to ROC

- Reliability diagram partitioning the data according to the forecast probability
- Suppose we partition according to observation – 2 categories, yes or no
- Look at distribution of forecasts separately for these two categories
 - → ROC Measures "discrimination"

ROC: explanation

$$H_n = \frac{\sum_{i=n}^{10} Y_i}{\sum_{i=1}^{10} Y_i}$$

Simple illustration

50%

ROC: explanation

(for bin n)
$$H_n = \frac{\sum_{i=n}^{10} Y_i}{\sum_{i=1}^{10} Y_i}$$

Simple illustration

50%

Simple illustration **ROC**: explanation $=\frac{\sum_{i=n}^{10} N_i}{\sum_{i=1}^{10} N_i}$ **False Alarm** (for bin n) 10⁷

20%

50%

ROC: explanation Σ^{10} N_c

$$\frac{\text{False Alarm}}{\text{(for bin n)}} \quad F_n = \frac{\sum_{i=n}^{10} N_i}{\sum_{i=1}^{10} N_i}$$

Simple illustration

ROC diagram

ROC diagram

Example: Lead time ensemble for +18-24h. Smoothing radius: 20km. Event: >1mm/6h

ROC area vs. Smoothing radius

Example: +18-24h

— Deterministic

— Time-lagged ensemble

Optimal smoothing radius vs. threshold and forecast range

What is time lagged ensemble for precipitation?

What is the role of additional smoothing?

Precipitation verification using:

- Reliability
- ROC area
- (FSS)

Optimal smoothing radius

Typical spatial error

Fractional Skill Score (FSS)

For every threshold and every smoothing radius:

Brier score:

$$FBS(Tr,R) = \frac{1}{N} \sum_{i,j} (M_{i,j} - O_{i,j})^2$$

Worst Brier score:

$$FBS_{worst}(Tr,R) = \frac{1}{N} \sum_{i,j} (M_{i,j}^2 + O_{i,j}^2)$$

Fractional Skill Score:

$$FSS(Tr,R) = 1 - \frac{FBS(Tr,R)}{FBS_{worst}(Tr,R)}$$

 $M_{i,j}$ - forecast probability to path the threshold

 $O_{i,j}$ - fraction of observations in surrounding R which passed the threshold

FSS vs. Smoothing radius

Example: +18-24h

Deterministic

— Time-lagged ensemble

Optimal smoothing radius vs. threshold and forecast range

What is time lagged ensemble for precipitation?

What is the role of additional smoothing?

Typical spatial error

Optimal Smoothing radius vs. Forecast range

—— Deterministic —— Time-lagged ensemble

Outline

What is time lagged ensemble for precipitation?

What is the role of additional smoothing?

Precipitation verification using:

- Reliability
- ROC area
- FSS

 \Longrightarrow

Optimal smoothing radius

Typical spatial error

Optimal probability forecast

Typical Spatial Error vs. Forecast range for COSMO-2.8km (avg. over thresholds)

Typical Spatial Error vs. Forecast range for IFS-9km (avg. over thresholds)

Typical Spatial Error vs. Forecast range for ICON-25km (avg. over thresholds)

Typical Spatial Error vs. Forecast range for GFS-25km (avg. over thresholds)

Summary

Summary

Thank you for your attention!

Typical Spatial Error vs. Forecast range for deterministic runs

חוב מתחילת ההרצאה – למה הציון מזגזג כתלות בטווח התחזית?

Time Lagged Ensemble for precipitation

Reliability

- 1. Decide number of categories (bins) and their distribution:
 - Depends on sample size, discreteness of forecast probabilities
 - Should be an integer fraction of ensemble size for e.g.
 - Don't all have to be the same width within bin sample should be large enough to get a stable estimate of the observed frequency.
- Bin the data
- 3. Compute the observed conditional frequency in each category (bin) k
 - obs. relative frequency_k = obs. occurrences_k / num. forecasts_k
- Plot observed frequency vs forecast probability
- 5. Plot sample climatology ("no resolution" line) (The sample base rate)
 - sample climatology = obs. occurrences / num. forecasts
- 6. Plot "no-skill" line halfway between climatology and perfect reliability (diagonal) lines
- 7. Plot forecast frequency histogram to show sharpness (or plot number of events next to each point on reliability graph)

$$\frac{1}{N}\sum_{k=1}^K n_k (p_k - \overline{o}_k)^2$$

If for all occasions when forecast probability p_k is predicted, the observed frequency of the event is $\overline{o}_k = p_k$ then the forecast is said to be reliable. Similar to bias for a continuous variable

ROC area

- Reliability diagram partitioning the data according to the forecast probability
- Suppose we partition according to observation – 2 categories, yes or no
- Look at distribution of forecasts separately for these two categories

Construction of ROC curve

- From original dataset, determine bins
 - Can use binned data as for Reliability diagram BUT
 - There must be enough occurrences of the event to determine the conditional distribution given occurrences – may be difficult for rare events.
 - Generally need at least 5 bins.
- For each probability threshold, determine HR and FA
- Plot HR vs FA to give empirical ROC.
- Use binormal model to obtain ROC area; recommended whenever there is sufficient data >100 cases or so.
 - For small samples, recommended method is that described by Simon Mason. (See 2007 tutorial)

Time Lagged Ensemble for precipitation

