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Besides the optimal SV perturbation 
strategy, Fig. 1 shows results of 
Arnoldi generated perturbations with 
five initial vectors each. The different 
curves show the performance of up to 
seven iteration loops. Hence, the 
perturbations are computed in up to 
35-dimensional subspaces.

The choice of the initial vectors for 
Arnoldi is quite important. Here, 
differences between two nearby 
states of the past trajectory are taken 
to start the Algorithm.

Table 1 gives an overview of the total 
growth obtained by Arnoldi pertur-
bations with several numbers of initial 

vectors and iterations. 

The computational costs are given in 
a similar way in Table 2. In both 
cases the measurements are given in 
percent of the corresponding results 
of the leading SV.

Conclusion

We used a matrix-free Arnoldi method 
for approximating SVs in Krylov 
subspaces. It avoids calculating the 
tangent linear operator explicitly and 
can be used to optimize any initial set 
of perturbations with respect to error 
growth. 
Our intention is to use this algorithm 
for improving the match of predicted 
patterns of ensemble spread and 
observed forecast errors, especially 
at the beginning of the forecast.
 

In weather forecasting ensemble prediction systems (EPS) are widely used to 

estimate forecast uncertainty. Forecast errors may arise from uncertainties in 

initial conditions and it is of great interest to identify the subspace of growing 

perturbations at initial time. These modes can be obtained by using suitable 

singular vector (SV) based perturbations. Unfortunately, the computation of 

SVs is very expensive, especially in systems with high resolution. We present 

an efficient method for approximating SVs using short time forecasts with the 

full non-linear model.  

Block-Arnoldi Approximation

For a given Matrix   the Krylov 
subspace method of Arnoldi can be 
used to obtain an approximation of an 
invariant subspace     and also an 
orthonormal basis       thereof. We 
use a block version of Arnoldi 
iteration, which allows to start with 
more than one initial vector [1].

 

Therefore (block) Arnoldi iteration 
needs just (the approximation of) 
matrix-vector products, but not the 
knowledge of the whole matrix  . 
Hence, this method is matrix-free.

If the residuum is sufficiently small, a 
good approximation to an invariant 
subspace is generated. For this case, 
one can show that SVs of        can be 
approximated properly in direct way, 
by using therefor the SVD of     . 

Consequently, this should lead to 
strong growing perturbations, which 
can be computed efficiently.

Basic idea

The approximation method is based 
on three parts:

● Definition of a suitable matrix
● Construction of a proper subspace
● Computation of the leading SVs and 

mapping to the original space

Evolved Increment Matrix

   

Approx. of matrix-vector products

Results

Numerical tests are done with the 
hyperbolic basic shallow water model 
(SWM), solved on a two-dimensional 
domain. A detailed description of that 
model can be found in, e.g., [2]. 
The used discretisized model has 
1587 degrees of freedom. Numerical 
solutions are computed with the Lax-
Wendroff scheme [3],[4]. 

Fig. 1 shows the development of the 
mean logarithmized perturbation 
growth rate (mean exponential growth 
rate) relative to the reference 
trajectory. The mean is obtained from 
100 perturbations, which are placed 
at randomly chosen points of the 
reference trajectory. The optimization 
time is set to               .

 

    m
 l

1 2 3 4 5 6 7

1 0.1 0.1 0.2 0.2 0.3 0.4 0.4

2 0.1 0.2 0.4 0.5 0.6 0.7 0.9

3 0.2 0.4 0.6 0.7 0.9 1.1 1.3

4 0.3 0.5 0.7 1.0 1.2 1.5 1.7

5 0.3 0.6 0.9 1.2 1.6 1.9 2.2

Relative Computation time - SWM

Table 2: Computation time within a two-dimensional 
SWM. The time is  given in percent of the full 
computation of Y and its SV‘s.     

Figure 1: Mean exponential growth rate of SV and 
Arnoldi generated perturbations with several 
iterations, started with five inital vectors each. 
Results for up to seven iterations.   

    m
 l

1 2 3 4 5 6 7

1 0 6.7 11 14 16 18 19

2 4.6 25 54 60 64 66 67

3 6.8 44 70 74 77 78 79

4 8.9 54 76 81 83 84 85

5 9.8 59 79 85 86 87 88

Arnoldi perturbations growth

Table 1: Integral of the mean exponential growth 
curves over the intervall [0,T], of Arnoldi generated 
perturbations. The given values are in percentage of 
the correspondent SV growth.     

Arnoldi - Matrix dimensions

Figure 2: Schematic representation of the 
relationship and dimensional size between the 
Arnoldi matrices and the full matrix Y. 
The Krylov subspace can be much smaller than 
the original system.  
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